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Lattice of partitions

Let B be a ccc Boolean algebra.

Consider the set Part(B) of all
partitions of B. This has a structure:
For P,Q ∈ Part(B), say that P refines Q and write P � Q if for
each p ∈ P there is exactly one q ∈ Q such that p ≤ q.
For P,Q ∈ Part(B), put P ∧ Q = {p ∧ q; p ∈ P, q ∈ Q} \ {0} and
call it the common refinement of P and Q.
Obviously, P ∧ Q refines both P and Q.

The relation P � Q is a partial order on Part(B).

P ∧ Q is the infimum of {P,Q} in (Part(B),�).

(Part(B),∧, {1B},�) is a semilattice with unit.
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Lattice of partitions

Let B be a complete ccc Boolean algebra. Then

(Part(B),�) is a lattice.

(Part(B),�) is complete iff B is atomic iff B is P(ω).

Proof. To get a supremum of {P,Q} ⊆ Part(B):
start with p ∈ P, put p0 = p and inductively define
qn =

∨
{q ∈ Q; q ‖ pn},

pn+1 =
∨
{p ∈ P; p ‖ qn}.

Clearly p ≤ pn ≤ qn ≤ pn+1 ≤ qn+1 for each n ∈ ω.
Put u(p) =

∨
{pn; n ∈ ω} =

∨
{qn; n ∈ ω}.

Then P ∨ Q = {up; p ∈ P} is a partition refined by both P,Q
and it is the finest among such partitions. Completeness of
(Part(B),�) implies the existence of a smallest element which
necessarily needs to be a partition consisting entirely of atoms of
B. In the other direction, the algebra is competely distributive.
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Structure induced by partitions

Let B be a complete ccc Boolean algebra. For P ∈ Part(B), let BP

be the subalgebra completely generated by P ⊆ B. Denote the
inclusion as eP : BP ⊆ B.

BP is isomorphic to P(ω).

BP∧Q is generated by BP ∪ BQ

BP∨Q = BP ∩ BQ

BP ∩ BQ = {0B, 1B} iff P ∨ Q = {1B}.
The lattice (Part(B),�) embedds into the latice (Sub(B),⊇)

The inclusions eP : BP ⊆ B are regular embeddings.
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Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

Directed system of subalgebras

For P � Q, let eQP be the inclusion of BQ in BP . The eQP are
regular embeddings

and the family {BP ; P ∈ Part(B)} together
with the mappings ePQ forms an directed system of complete
Boolean algebras:
Definition. Let (D,≤) be a directed poset. A set {Xα;α ∈ D} of
objects, together with a set {fαβ : Xα → Xβ;α ≤ β ∈ D} of
morphisms, forms a directed system if

fαα : Xα → Xα is the identity for each α ∈ D

fβγ ◦ fαβ = fαγ whenever α ≤ β ≤ γ ∈ D

Definition. A direct limit of the directed system is an object X
together with morphisms fα : Xα → X such that everything
commutes and every other such object Y with morphisms
gα : Xα → Y factorizes over X in a unique way.
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Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

Directed system of subalgebras

For P � Q, let eQP be the inclusion of BQ in BP . The eQP are
regular embeddings and the family {BP ; P ∈ Part(B)} together
with the mappings ePQ forms an directed system of complete
Boolean algebras:
Definition. Let (D,≤) be a directed poset. A set {Xα;α ∈ D} of
objects, together with a set {fαβ : Xα → Xβ;α ≤ β ∈ D} of
morphisms, forms a directed system if

fαα : Xα → Xα is the identity for each α ∈ D

fβγ ◦ fαβ = fαγ whenever α ≤ β ≤ γ ∈ D

Definition. A direct limit of the directed system is an object X
together with morphisms fα : Xα → X such that everything
commutes and every other such object Y with morphisms
gα : Xα → Y factorizes over X in a unique way.
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The algebra as a limit

Fact: Every directed system
{

Xα, f
β
α ;α ≤ β ∈ D

}
in the category

of Boolean algebras has a direct limit that consists of the object
X = (

⊔
Xα/ ≈) where x ≈ y ≡ (∃α, β ≤ γ ∈ D)(f γα (x) = f γβ (y)),

and morphisms fα : Xα → X that send x ∈ Xα to the equivalence
class [x ]≈ of the copy of x in X .

Theorem: The algebra B, together with the regular embeddings
eP : BP → B, is a direct limit of the directed system {BP , e

Q
P }.

Proof. Every triangle commutes, i.e. eP ◦ eQP = eQ whenever
P � Q. The algebra B is easily seen to be isomorphic to the limit
(
⊔

BP/ ≈) as described above: put ϕ(x) = [x ]≈ for x ∈ B. The
equivalence relation reduces to x = y in B, and merely factorizes
out the formal distinction between multiple copies of x ∈ B coming
from different components BP of the disjoint union; hence ϕ is
one-to-one. Clearly, ϕ is onto and homomorphic.
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Ideals and quotients induced by partitions

For P ∈ Part(B), let JP be the ideal on B generated by P ⊆ B.

If P � Q, then JP ⊆ JQ .

JP∧Q = JP ∩ JQ .

For P ∈ Part(B), write B/P for B/JP and BP/P for BP/JP . For
P � Q ∈ Part(B), we have B/Q a quotient of B/P. The family of
B/P with the quotient mappings forms an inverse system.

Every quotient BP/P is isomorphic to P(ω)/fin.

The inclusion BP/P ⊆ B/P is a regular embedding.

Theorem: The algebra B, together with the quotient mappings
B→ B/P, is an inverse limit of the inverse system of B/P.
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Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

Ideals and quotients induced by partitions

For P ∈ Part(B), let JP be the ideal on B generated by P ⊆ B.

If P � Q, then JP ⊆ JQ .

JP∧Q = JP ∩ JQ .

For P ∈ Part(B), write B/P for B/JP and BP/P for BP/JP . For
P � Q ∈ Part(B), we have B/Q a quotient of B/P. The family of
B/P with the quotient mappings forms an inverse system.

Every quotient BP/P is isomorphic to P(ω)/fin.

The inclusion BP/P ⊆ B/P is a regular embedding.

Theorem: The algebra B, together with the quotient mappings
B→ B/P, is an inverse limit of the inverse system of B/P.
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Nonhomogeneity application

Corrolary

(1) Every infinite complete ccc algebra is a limit of a directed
system of copies of P(ω).

Dually, every infinite ccc EDC space is
an inverse limit of a directed system of copies of βω.
(2) Every infinite complete ccc Boolean algebra is an inverse limit
of an inverse system of copies of P(ω)/fin. Dually, every infinite
ccc EDC space is a direct limit of directed system of copies of ω∗.
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Ultrafilters and partitions

Fix an ultrafilter U on the complete ccc algebra B and look at how
U reflects in the partition structure.

For P a partition of B, put UP = U ∩ BP , which is clearly an
ultrafilter on BP ; so UP can be viewed as an ultrafilter on P(ω).
It is nontrivial if U ∩ P = ∅.
For P � Q, we have UP ≥RK UQ via the function that maps p ∈ P
to the unique q ∈ Q such that p < q.
So every ultrafilter U on B determines a subset of the
Rudin-Keisler ordering. This system is directed via P ∧ Q � P,Q
and is coherent in the sense that UQ = UP ∩ BQ for P � Q.
The converse is true: every such system determines an ultrafilter
U =

⋃
UP on the direct limit algebra B =

⋃
BP .
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Nonhomogeneity application

Coherent families

Definition. Let B be a complete, atomless, ccc algebra. For a
property ϕ of families of subsets of ω, we say that a subset X ⊆ B
is a coherent ϕ-family on B if for every partition P = {pn; n ∈ ω}
of B, the family {A ⊆ ω;

∨
{pn; n ∈ A} ∈ X} ⊆ P(ω) has ϕ.

Easy examples:

coherent antichain is just an antichain

coherent filter is just a filter

coherent ultrafilter is just an ultrafilter

coherent atom is a generic filter on B
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Nonhomogeneity application

Coherent ultrafilters

We are interested in classes of coherent ultrafilters,

such as coherent P-ultrafilters.
By the very definition, ZFC implications between various classes of
ultrafilters on ω continue to hold for the corresponding classes of
coherent ultrafilters on B. For instance, every coherent selective
ultrafilter on B is a coherent P-ultrafilter on B, as every selective
ultrafilter on ω is a P-ultrafilter on ω.
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Coherent P-ultrafilters

Lemma. Let B be a complete ccc algebra. An ultrafilter U on B is
a coherent P-ultrafilter iff for every pair of partitions P and Q of B
such that P � Q, either U ∩ Q 6= ∅, or there is a set X ⊆ P such
that

∨
X ∈ U and for every q ∈ Q, the set {p ∈ X ; p ∧ q 6= 0} is

finite.

Note that this is the P-point property,
demanded for every situation P � Q.
Warning: the coherent P-ultrafilter condition is ’only’ evaluated in
the subalgebras BP ' P(ω); a coherent P-ultrafilter on B is not a
P-point in St(B), unless B happens to be P(ω) itself. It is however
a special point in St(B).
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Do they even exist?

Question: Do (nontrivial) coherent P-ultrafilters exist?

Consistently not: for a coherent P-ultrafilter U on B, and
a partition P (such that P ∩ U = ∅), the ultrafilter UP is a
(nontrivial) P-point in BP ' P(ω); those need not exist by
a famous result of Shelah.
But also, consistently yes, in a strong sense.
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Existence of coherent P-ultrafilters

Theorem: Let B be a complete ccc Boolean algebra of π-weight at
most c. Then every filter on B generated by fewer than c elements
can be extended to a coherent P-ultrafilter on B

iff c = d.
Proof. Assume c = d and let F ⊆ B be a filter with a base smaller
than c. Enumerate all partition pairs P � Q as
{(Pα,Qα);α < d isolated}; start with F0 = F . If an increasing
chain (Fβ | β < α) of filters has been found such that every Fβ
has a base smaller than c and has the P-ultrafilter property with
respect to {(Pγ ,Qγ); γ < β}, proceed as follows. On α limit, let
Fα be generated by

⋃
{Fβ;β < α}. If α = β + 1 is a successor,

consider (Pβ,Qβ). If some q ∈ Qβ is compatible with Fβ, let
Fα = Fβ+1 be the filter generated by Fβ ∪ {q} and be done with
(Pβ,Qβ).
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Existence of coherent P-ultrafilters (cont.)

If there is no such q in Qβ, enumerate Qβ as {qn; n ∈ ω} and
consider the refinement Pβ of Qβ.

Without loss of generality, every
qn ∈ Qβ is partitioned into infinitely many p ∈ Pβ; enumerate
{p ∈ P; p < qn} as {pm

n ; m ∈ ω}. Let {aξ; ξ < κ} be the base of
Fβ, for some κ < c. Now emulate the Ketonen construction: for
each ξ < κ, put fξ(n) = min {m; aξ ∧ pm

n 6= 0} if there is such an
m. In the missing places, fill the value of fξ(n) with the next
defined value. This yields a family {fξ : ω → ω; ξ < κ} of functions
which cannot be dominating, as κ < c = d. Take a (strictly
increasing) function f : ω → ω not dominated by any fξ; then
a =

∨
{pm

n ; n ∈ ω,m ≤ f (n)} meets every aξ, as f 6≤ fξ. Let Fα be
generated by Fβ ∪ {a}. This extends Fβ, is generated by fewer
than c elements, and has the P-ultrafilter property with respect to
(Pβ,Qβ). Now extend

⋃
{Fα;α < c} to an ultrafilter.
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{p ∈ P; p < qn} as {pm

n ; m ∈ ω}. Let {aξ; ξ < κ} be the base of
Fβ, for some κ < c. Now emulate the Ketonen construction: for
each ξ < κ, put fξ(n) = min {m; aξ ∧ pm

n 6= 0} if there is such an
m. In the missing places, fill the value of fξ(n) with the next
defined value. This yields a family {fξ : ω → ω; ξ < κ} of functions
which cannot be dominating, as κ < c = d.

Take a (strictly
increasing) function f : ω → ω not dominated by any fξ; then
a =

∨
{pm

n ; n ∈ ω,m ≤ f (n)} meets every aξ, as f 6≤ fξ. Let Fα be
generated by Fβ ∪ {a}. This extends Fβ, is generated by fewer
than c elements, and has the P-ultrafilter property with respect to
(Pβ,Qβ). Now extend

⋃
{Fα;α < c} to an ultrafilter.
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Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

Existence of coherent P-ultrafilters (cont.)

If there is no such q in Qβ, enumerate Qβ as {qn; n ∈ ω} and
consider the refinement Pβ of Qβ. Without loss of generality, every
qn ∈ Qβ is partitioned into infinitely many p ∈ Pβ; enumerate
{p ∈ P; p < qn} as {pm

n ; m ∈ ω}. Let {aξ; ξ < κ} be the base of
Fβ, for some κ < c. Now emulate the Ketonen construction: for
each ξ < κ, put fξ(n) = min {m; aξ ∧ pm

n 6= 0} if there is such an
m. In the missing places, fill the value of fξ(n) with the next
defined value. This yields a family {fξ : ω → ω; ξ < κ} of functions
which cannot be dominating, as κ < c = d. Take a (strictly
increasing) function f : ω → ω not dominated by any fξ; then
a =

∨
{pm

n ; n ∈ ω,m ≤ f (n)} meets every aξ, as f 6≤ fξ. Let Fα be
generated by Fβ ∪ {a}. This extends Fβ, is generated by fewer
than c elements, and has the P-ultrafilter property with respect to
(Pβ,Qβ). Now extend

⋃
{Fα;α < c} to an ultrafilter.
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Corollary: The following are equivalent

c = d

P-points on ω exist generically

coherent P-ultrafilters on complete ccc B with π(B) = c
exist generically

Question: Is there a coherent P-ultrafilter on a complete ccc
Boolean algebra B which is bigger than c?
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Nonhomogeneity

Definition. A topological space X is homogeneous if for every two
points x , y ∈ X there is an automorphism f of X such that
f (x) = y .

Theorem (Froĺık): A Stone space of an infinite complete Boolean
algebra (that is, an extremally disconnected compact space) is
never homogeneous.
That is, there are pairs of points that cannot be swapped by
a homeomorphism. These are witnesses of nonhomogeneity.
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Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have
been found.

absolutely: van Mill for w(X ) > c; van Douwen for non-ccc .
consistently: Balcar-Simon in the remaining cases.
So what remains is to find witnesses of nonhomogeneity for
extremally disconnected ccc compacts of weight c .
Definition: A point x ∈ X is discretely untouchable if
x 6∈ cl(C \ {x}) for every countable discrete set C ⊆ X .
(a hot candidate since 1991)
Definition: A point x ∈ X is untouchable if x 6∈ cl(C \ {x}) for
every countable nowhere dense set C ⊆ X .
(This slide absolutely doesn’t do justice to the whole story.)
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An untouchable point

Theorem: Let B be a complete ccc algebra. Let U be a coherent
P-ultrafilter on B. Then U is an untouchable point in St(B).

Proof. Let R = {Fn; n ∈ ω} ⊆ St(B) be countable nowhere dense.
Choose some a0 ∈ F0 with −a0 ∈ U and put
R0 = {F ∈ R; a0 ∈ F} ⊆ R. Continue inductively: if disjoint
ai ∈ B+ for i < k have been found such that ai separates Fi from
U and

∨
i<k ai 6∈ U put Ri = {F ∈ R; ai ∈ F} and consider⋃

i<k Ri ⊆ R. If
⋃

i<k Ri = R, good for U . Otherwise, let nk be the
first index such that Fnk 6∈

⋃
i<k Ri and choose some ak ⊥

∨
i<k ai

separating Fnk from U . This either stops at some k or we arrive at
an infinite disjoint system Q = {ai ; i ∈ ω} ⊆ B+. WLOG, Q is a
partition. For each ai ∈ Q, choose an infinite partition Pi of ai
such that Pi ∩

⋃
Ri = ∅ (Ri is nowhere dense). So P =

⋃
Pi � Q.

So there is some u ∈ U such that u 6∈ Fn for all n.
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Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

An untouchable point

Theorem: Let B be a complete ccc algebra. Let U be a coherent
P-ultrafilter on B. Then U is an untouchable point in St(B).
Proof. Let R = {Fn; n ∈ ω} ⊆ St(B) be countable nowhere dense.
Choose some a0 ∈ F0 with −a0 ∈ U and put
R0 = {F ∈ R; a0 ∈ F} ⊆ R. Continue inductively: if disjoint
ai ∈ B+ for i < k have been found such that ai separates Fi from
U and

∨
i<k ai 6∈ U put Ri = {F ∈ R; ai ∈ F} and consider⋃

i<k Ri ⊆ R. If
⋃

i<k Ri = R, good for U . Otherwise, let nk be the
first index such that Fnk 6∈

⋃
i<k Ri

and choose some ak ⊥
∨

i<k ai
separating Fnk from U . This either stops at some k or we arrive at
an infinite disjoint system Q = {ai ; i ∈ ω} ⊆ B+. WLOG, Q is a
partition. For each ai ∈ Q, choose an infinite partition Pi of ai
such that Pi ∩

⋃
Ri = ∅ (Ri is nowhere dense). So P =

⋃
Pi � Q.

So there is some u ∈ U such that u 6∈ Fn for all n.

Jan Starý Coherent ultrafilters on ccc Boolean algebras



The lattice of partitions
Structure induced by partitions

Partitions and ultrafilters
Coherent ultrafilters

Nonhomogeneity application

An untouchable point

Theorem: Let B be a complete ccc algebra. Let U be a coherent
P-ultrafilter on B. Then U is an untouchable point in St(B).
Proof. Let R = {Fn; n ∈ ω} ⊆ St(B) be countable nowhere dense.
Choose some a0 ∈ F0 with −a0 ∈ U and put
R0 = {F ∈ R; a0 ∈ F} ⊆ R. Continue inductively: if disjoint
ai ∈ B+ for i < k have been found such that ai separates Fi from
U and

∨
i<k ai 6∈ U put Ri = {F ∈ R; ai ∈ F} and consider⋃

i<k Ri ⊆ R. If
⋃

i<k Ri = R, good for U . Otherwise, let nk be the
first index such that Fnk 6∈

⋃
i<k Ri and choose some ak ⊥

∨
i<k ai

separating Fnk from U .

This either stops at some k or we arrive at
an infinite disjoint system Q = {ai ; i ∈ ω} ⊆ B+. WLOG, Q is a
partition. For each ai ∈ Q, choose an infinite partition Pi of ai
such that Pi ∩

⋃
Ri = ∅ (Ri is nowhere dense). So P =

⋃
Pi � Q.

So there is some u ∈ U such that u 6∈ Fn for all n.
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