Coherent ultrafilters on ccc Boolean algebras

Jan Starý

with B. Balcar

Hejnice 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

æ

• the lattice of partitions

Jan Starý Coherent ultrafilters on ccc Boolean algebras

< ロ > < 同 > < 回 > < 回 >

э

- the lattice of partitions
- the structure induced by partitions

э

- the lattice of partitions
- the structure induced by partitions
- the partitions structure and ultrafilters

▲ □ ▶ ▲ □ ▶ ▲

-

- the lattice of partitions
- the structure induced by partitions
- the partitions structure and ultrafilters
- coherent ultrafilters

▲ □ ▶ ▲ □ ▶ ▲

-

Outline

- the lattice of partitions
- the structure induced by partitions
- the partitions structure and ultrafilters
- coherent ultrafilters
- a nonhomogeneity application

▲ □ ▶ ▲ □ ▶ ▲

Lattice of partitions

Let ${\mathbb B}$ be a ccc Boolean algebra.

э

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure:

- 4 同 2 4 日 2 4 日 2

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \leq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$.

- 4 同 2 4 日 2 4 日 2

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \preceq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$. For $P, Q \in Part(\mathbb{B})$, put $P \land Q = \{p \land q; p \in P, q \in Q\} \setminus \{0\}$ and call it the *common refinement* of P and Q.

- 4 周 ト 4 ラ ト 4 ラ ト

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \preceq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$. For $P, Q \in Part(\mathbb{B})$, put $P \land Q = \{p \land q; p \in P, q \in Q\} \setminus \{0\}$ and call it the *common refinement* of P and Q. Obviously, $P \land Q$ refines both P and Q.

- 4 回 ト 4 ヨト 4 ヨト

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \preceq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$. For $P, Q \in Part(\mathbb{B})$, put $P \land Q = \{p \land q; p \in P, q \in Q\} \setminus \{0\}$ and call it the *common refinement* of P and Q. Obviously, $P \land Q$ refines both P and Q.

• The relation $P \leq Q$ is a partial order on $Part(\mathbb{B})$.

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \preceq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$. For $P, Q \in Part(\mathbb{B})$, put $P \land Q = \{p \land q; p \in P, q \in Q\} \setminus \{0\}$ and call it the *common refinement* of P and Q. Obviously, $P \land Q$ refines both P and Q.

- The relation $P \leq Q$ is a partial order on $Part(\mathbb{B})$.
- $P \land Q$ is the infimum of $\{P, Q\}$ in $(Part(\mathbb{B}), \preceq)$.

< ロ > < 同 > < 回 > < 回 >

Lattice of partitions

Let \mathbb{B} be a ccc Boolean algebra. Consider the set $Part(\mathbb{B})$ of all partitions of \mathbb{B} . This has a structure: For $P, Q \in Part(\mathbb{B})$, say that P refines Q and write $P \preceq Q$ if for each $p \in P$ there is exactly one $q \in Q$ such that $p \leq q$. For $P, Q \in Part(\mathbb{B})$, put $P \land Q = \{p \land q; p \in P, q \in Q\} \setminus \{0\}$ and call it the *common refinement* of P and Q. Obviously, $P \land Q$ refines both P and Q.

- The relation $P \leq Q$ is a partial order on $Part(\mathbb{B})$.
- $P \land Q$ is the infimum of $\{P, Q\}$ in $(Part(\mathbb{B}), \preceq)$.
- $(Part(\mathbb{B}), \land, \{1_{\mathbb{B}}\}, \preceq)$ is a semilattice with unit.

< ロ > < 同 > < 回 > < 回 >

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

▲□ ► < □ ► </p>

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

- $(Part(\mathbb{B}), \preceq)$ is a lattice.
- $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

- $(Part(\mathbb{B}), \preceq)$ is a lattice.
- $(Part(\mathbb{B}), \leq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Lattice of partitions

Let ${\mathbb B}$ be a *complete* ccc Boolean algebra. Then

- $(Part(\mathbb{B}), \preceq)$ is a lattice.
- $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$.

Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define

- 4 同 ト 4 ヨ ト 4 ヨ ト

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

• $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$. Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define $q_n = \bigvee \{q \in Q; q \parallel p_n\},$ $p_{n+1} = \bigvee \{p \in P; p \parallel q_n\}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

• $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$. Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define $q_n = \bigvee \{q \in Q; q \parallel p_n\},$ $p_{n+1} = \bigvee \{p \in P; p \parallel q_n\}.$ Clearly $p \leq p_n \leq q_n \leq p_{n+1} \leq q_{n+1}$ for each $n \in \omega$. Put $u(p) = \bigvee \{p_n; n \in \omega\} = \bigvee \{q_n; n \in \omega\}.$

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

• $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$. Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define $q_n = \bigvee \{q \in Q; q \parallel p_n\},\$ $p_{n+1} = \bigvee \{p \in P; p \parallel q_n\}.$ Clearly $p \leq p_n \leq q_n \leq p_{n+1} \leq q_{n+1}$ for each $n \in \omega$. Put $u(p) = \bigvee \{p_n; n \in \omega\} = \bigvee \{q_n; n \in \omega\}.$ Then $P \lor Q = \{u_p; p \in P\}$ is a partition refined by both P, Q

・ 同 ト ・ ヨ ト ・ ヨ ト

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

• $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$. Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define $q_n = \bigvee \{q \in Q; q \parallel p_n\},$ $p_{n+1} = \bigvee \{p \in P; p \parallel q_n\}.$ Clearly $p \leq p_n \leq q_n \leq p_{n+1} \leq q_{n+1}$ for each $n \in \omega$. Put $u(p) = \bigvee \{p_n; n \in \omega\} = \bigvee \{q_n; n \in \omega\}.$ Then $P \lor Q = \{u_p; p \in P\}$ is a partition refined by both P, Qand it is the finest among such partitions.

<日本

Lattice of partitions

Let ${\mathbb B}$ be a ${\it complete}\xspace$ ccc Boolean algebra. Then

• $(Part(\mathbb{B}), \preceq)$ is a lattice.

• $(Part(\mathbb{B}), \preceq)$ is complete iff \mathbb{B} is atomic iff \mathbb{B} is $P(\omega)$. Proof. To get a supremum of $\{P, Q\} \subseteq Part(\mathbb{B})$: start with $p \in P$, put $p_0 = p$ and inductively define $a_n = \bigvee \{ q \in Q; q \parallel p_n \},\$ $p_{n+1} = \bigvee \{p \in P; p \parallel q_n\}.$ Clearly $p \leq p_n \leq q_n \leq p_{n+1} \leq q_{n+1}$ for each $n \in \omega$. Put $u(p) = \bigvee \{p_n; n \in \omega\} = \bigvee \{q_n; n \in \omega\}.$ Then $P \lor Q = \{u_p; p \in P\}$ is a partition refined by both P, Qand it is the finest among such partitions. Completeness of $(Part(\mathbb{B}), \preceq)$ implies the existence of a smallest element which necessarily needs to be a partition consisting entirely of atoms of \mathbb{B} . In the other direction, the algebra is competely distributive.

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

< 🗇 🕨 < 🖻 🕨

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

• \mathbb{B}_P is isomorphic to $P(\omega)$.

< 🗇 🕨 < 🖻 🕨

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

- \mathbb{B}_P is isomorphic to $P(\omega)$.
- $\mathbb{B}_{P \wedge Q}$ is generated by $\mathbb{B}_P \cup \mathbb{B}_Q$

・ 同 ト ・ ヨ ト ・ ヨ

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

- \mathbb{B}_P is isomorphic to $P(\omega)$.
- $\mathbb{B}_{P \wedge Q}$ is generated by $\mathbb{B}_P \cup \mathbb{B}_Q$
- $\mathbb{B}_{P \lor Q} = \mathbb{B}_P \cap \mathbb{B}_Q$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

- \mathbb{B}_P is isomorphic to $P(\omega)$.
- $\mathbb{B}_{P \wedge Q}$ is generated by $\mathbb{B}_P \cup \mathbb{B}_Q$
- $\mathbb{B}_{P \vee Q} = \mathbb{B}_P \cap \mathbb{B}_Q$
- $\mathbb{B}_P \cap \mathbb{B}_Q = \{\mathbf{0}_{\mathbb{B}}, \mathbf{1}_{\mathbb{B}}\}$ iff $P \lor Q = \{\mathbf{1}_{\mathbb{B}}\}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

- \mathbb{B}_P is isomorphic to $P(\omega)$.
- $\mathbb{B}_{P \wedge Q}$ is generated by $\mathbb{B}_P \cup \mathbb{B}_Q$
- $\mathbb{B}_{P \vee Q} = \mathbb{B}_P \cap \mathbb{B}_Q$
- $\mathbb{B}_P \cap \mathbb{B}_Q = \{0_{\mathbb{B}}, 1_{\mathbb{B}}\}$ iff $P \lor Q = \{1_{\mathbb{B}}\}.$
- The lattice $(Part(\mathbb{B}), \preceq)$ embedds into the latice $(Sub(\mathbb{B}), \supseteq)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Structure induced by partitions

Let \mathbb{B} be a complete ccc Boolean algebra. For $P \in Part(\mathbb{B})$, let \mathbb{B}_P be the subalgebra completely generated by $P \subseteq \mathbb{B}$. Denote the inclusion as $e_P : \mathbb{B}_P \subseteq \mathbb{B}$.

- \mathbb{B}_P is isomorphic to $P(\omega)$.
- $\mathbb{B}_{P \wedge Q}$ is generated by $\mathbb{B}_P \cup \mathbb{B}_Q$
- $\mathbb{B}_{P \vee Q} = \mathbb{B}_P \cap \mathbb{B}_Q$
- $\mathbb{B}_P \cap \mathbb{B}_Q = \{0_{\mathbb{B}}, 1_{\mathbb{B}}\}$ iff $P \lor Q = \{1_{\mathbb{B}}\}.$
- The lattice $(Part(\mathbb{B}), \preceq)$ embedds into the latice $(Sub(\mathbb{B}), \supseteq)$
- The inclusions $e_P : \mathbb{B}_P \subseteq \mathbb{B}$ are regular embeddings.

Directed system of subalgebras

For $P \preceq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings

▲ 同 ▶ → 三 ▶

Directed system of subalgebras

For $P \leq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings and the family $\{\mathbb{B}_P; P \in Part(\mathbb{B})\}$ together with the mappings e_Q^P forms an *directed system* of complete Boolean algebras:

Directed system of subalgebras

For $P \leq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings and the family $\{\mathbb{B}_P; P \in Part(\mathbb{B})\}$ together with the mappings e_Q^P forms an *directed system* of complete Boolean algebras:

Definition. Let (D, \leq) be a directed poset. A set $\{X_{\alpha}; \alpha \in D\}$ of objects, together with a set $\{f_{\alpha\beta}: X_{\alpha} \to X_{\beta}; \alpha \leq \beta \in D\}$ of morphisms, forms a *directed system* if

• $f_{\alpha\alpha}: X_{\alpha} \to X_{\alpha}$ is the identity for each $\alpha \in D$

•
$$f_{\beta\gamma} \circ f_{\alpha\beta} = f_{\alpha\gamma}$$
 whenever $\alpha \leq \beta \leq \gamma \in D$

Directed system of subalgebras

For $P \leq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings and the family $\{\mathbb{B}_P; P \in Part(\mathbb{B})\}$ together with the mappings e_Q^P forms an *directed system* of complete Boolean algebras:

Definition. Let (D, \leq) be a directed poset. A set $\{X_{\alpha}; \alpha \in D\}$ of objects, together with a set $\{f_{\alpha\beta}: X_{\alpha} \to X_{\beta}; \alpha \leq \beta \in D\}$ of morphisms, forms a *directed system* if

•
$$f_{\alpha\alpha}: X_{\alpha} \to X_{\alpha}$$
 is the identity for each $\alpha \in D$

• $f_{\beta\gamma} \circ f_{\alpha\beta} = f_{\alpha\gamma}$ whenever $\alpha \leq \beta \leq \gamma \in D$

Definition. A *direct limit* of the directed system is an object X together with morphisms $f_{\alpha} : X_{\alpha} \to X$ such that

< 口 > < 同 > < 三 > < 三

Directed system of subalgebras

For $P \leq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings and the family $\{\mathbb{B}_P; P \in Part(\mathbb{B})\}$ together with the mappings e_Q^P forms an *directed system* of complete Boolean algebras:

Definition. Let (D, \leq) be a directed poset. A set $\{X_{\alpha}; \alpha \in D\}$ of objects, together with a set $\{f_{\alpha\beta}: X_{\alpha} \to X_{\beta}; \alpha \leq \beta \in D\}$ of morphisms, forms a *directed system* if

•
$$f_{\alpha\alpha}: X_{\alpha} \to X_{\alpha}$$
 is the identity for each $\alpha \in D$

•
$$f_{\beta\gamma} \circ f_{\alpha\beta} = f_{\alpha\gamma}$$
 whenever $\alpha \leq \beta \leq \gamma \in D$

Definition. A *direct limit* of the directed system is an object X together with morphisms $f_{\alpha} : X_{\alpha} \to X$ such that everything commutes

< 口 > < 同 > < 三 > < 三

Directed system of subalgebras

For $P \leq Q$, let e_P^Q be the inclusion of \mathbb{B}_Q in \mathbb{B}_P . The e_P^Q are regular embeddings and the family $\{\mathbb{B}_P; P \in Part(\mathbb{B})\}$ together with the mappings e_Q^P forms an *directed system* of complete Boolean algebras:

Definition. Let (D, \leq) be a directed poset. A set $\{X_{\alpha}; \alpha \in D\}$ of objects, together with a set $\{f_{\alpha\beta}: X_{\alpha} \to X_{\beta}; \alpha \leq \beta \in D\}$ of morphisms, forms a *directed system* if

•
$$f_{\alpha\alpha}: X_{\alpha} \to X_{\alpha}$$
 is the identity for each $\alpha \in D$

• $f_{\beta\gamma} \circ f_{\alpha\beta} = f_{\alpha\gamma}$ whenever $\alpha \leq \beta \leq \gamma \in D$

Definition. A *direct limit* of the directed system is an object X together with morphisms $f_{\alpha} : X_{\alpha} \to X$ such that everything commutes and every other such object Y with morphisms $g_{\alpha} : X_{\alpha} \to Y$ factorizes over X in a unique way.

▲ □ ▶ ▲ □ ▶ ▲

The algebra as a limit

Fact: Every directed system $\{X_{\alpha}, f_{\alpha}^{\beta}; \alpha \leq \beta \in D\}$ in the category of Boolean algebras *has* a direct limit that consists of the object $X = (\bigsqcup X_{\alpha} / \approx)$ where $x \approx y \equiv (\exists \alpha, \beta \leq \gamma \in D)(f_{\alpha}^{\gamma}(x) = f_{\beta}^{\gamma}(y))$, and morphisms $f_{\alpha} : X_{\alpha} \to X$ that send $x \in X_{\alpha}$ to the equivalence class $[x]_{\approx}$ of the copy of x in X.

The algebra as a limit

Fact: Every directed system $\{X_{\alpha}, f_{\alpha}^{\beta}; \alpha \leq \beta \in D\}$ in the category of Boolean algebras *has* a direct limit that consists of the object $X = (\bigsqcup X_{\alpha} / \approx)$ where $x \approx y \equiv (\exists \alpha, \beta \leq \gamma \in D)(f_{\alpha}^{\gamma}(x) = f_{\beta}^{\gamma}(y))$, and morphisms $f_{\alpha} : X_{\alpha} \to X$ that send $x \in X_{\alpha}$ to the equivalence class $[x]_{\approx}$ of the copy of x in X.

Theorem: The algebra \mathbb{B} , together with the regular embeddings $e_P : \mathbb{B}_P \to \mathbb{B}$, is a direct limit of the directed system $\{\mathbb{B}_P, e_P^Q\}$.

The algebra as a limit

Fact: Every directed system $\{X_{\alpha}, f_{\alpha}^{\beta}; \alpha \leq \beta \in D\}$ in the category of Boolean algebras *has* a direct limit that consists of the object $X = (\bigsqcup X_{\alpha} / \approx)$ where $x \approx y \equiv (\exists \alpha, \beta \leq \gamma \in D)(f_{\alpha}^{\gamma}(x) = f_{\beta}^{\gamma}(y))$, and morphisms $f_{\alpha} : X_{\alpha} \to X$ that send $x \in X_{\alpha}$ to the equivalence class $[x]_{\approx}$ of the copy of x in X.

Theorem: The algebra \mathbb{B} , together with the regular embeddings $e_P : \mathbb{B}_P \to \mathbb{B}$, is a direct limit of the directed system $\{\mathbb{B}_P, e_P^Q\}$. Proof. Every triangle commutes, i.e. $e_P \circ e_P^Q = e_Q$ whenever $P \preceq Q$. The algebra \mathbb{B} is easily seen to be isomorphic to the limit $(\bigcup \mathbb{B}_P / \approx)$ as described above: put $\varphi(x) = [x]_{\approx}$ for $x \in \mathbb{B}$. The equivalence relation reduces to x = y in \mathbb{B} , and merely factorizes out the formal distinction between multiple copies of $x \in \mathbb{B}$ coming from different components \mathbb{B}_P of the disjoint union; hence φ is one-to-one. Clearly, φ is onto and homomorphic.

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \leq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \preceq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q.$

For $P \in Part(\mathbb{B})$, write \mathbb{B}/P for \mathbb{B}/\mathcal{J}_P and \mathbb{B}_P/P for $\mathbb{B}_P/\mathcal{J}_P$. For $P \preceq Q \in Part(\mathbb{B})$, we have \mathbb{B}/Q a quotient of \mathbb{B}/P .

- 同 ト - ヨ ト - - ヨ ト

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \preceq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q.$

For $P \in Part(\mathbb{B})$, write \mathbb{B}/P for \mathbb{B}/\mathcal{J}_P and \mathbb{B}_P/P for $\mathbb{B}_P/\mathcal{J}_P$. For $P \leq Q \in Part(\mathbb{B})$, we have \mathbb{B}/Q a quotient of \mathbb{B}/P . The family of \mathbb{B}/P with the quotient mappings forms an inverse system.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \leq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q.$

For $P \in Part(\mathbb{B})$, write \mathbb{B}/P for \mathbb{B}/\mathcal{J}_P and \mathbb{B}_P/P for $\mathbb{B}_P/\mathcal{J}_P$. For $P \leq Q \in Part(\mathbb{B})$, we have \mathbb{B}/Q a quotient of \mathbb{B}/P . The family of \mathbb{B}/P with the quotient mappings forms an inverse system.

• Every quotient \mathbb{B}_P/P is isomorphic to $P(\omega)/fin$.

- 4 周 ト 4 戸 ト 4 戸 ト

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \preceq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q.$

For $P \in Part(\mathbb{B})$, write \mathbb{B}/P for \mathbb{B}/\mathcal{J}_P and \mathbb{B}_P/P for $\mathbb{B}_P/\mathcal{J}_P$. For $P \leq Q \in Part(\mathbb{B})$, we have \mathbb{B}/Q a quotient of \mathbb{B}/P . The family of \mathbb{B}/P with the quotient mappings forms an inverse system.

- Every quotient \mathbb{B}_P/P is isomorphic to $P(\omega)/fin$.
- The inclusion $\mathbb{B}_P/P \subseteq \mathbb{B}/P$ is a regular embedding.

- 4 周 ト 4 戸 ト 4 戸 ト

Ideals and quotients induced by partitions

For $P \in Part(\mathbb{B})$, let \mathcal{J}_P be the ideal on \mathbb{B} generated by $P \subseteq \mathbb{B}$.

- If $P \preceq Q$, then $\mathcal{J}_P \subseteq \mathcal{J}_Q$.
- $\mathcal{J}_{P \wedge Q} = \mathcal{J}_P \cap \mathcal{J}_Q.$

For $P \in Part(\mathbb{B})$, write \mathbb{B}/P for \mathbb{B}/\mathcal{J}_P and \mathbb{B}_P/P for $\mathbb{B}_P/\mathcal{J}_P$. For $P \leq Q \in Part(\mathbb{B})$, we have \mathbb{B}/Q a quotient of \mathbb{B}/P . The family of \mathbb{B}/P with the quotient mappings forms an inverse system.

- Every quotient \mathbb{B}_P/P is isomorphic to $P(\omega)/fin$.
- The inclusion $\mathbb{B}_P/P \subseteq \mathbb{B}/P$ is a regular embedding.

Theorem: The algebra \mathbb{B} , together with the quotient mappings $\mathbb{B} \to \mathbb{B}/P$, is an inverse limit of the inverse system of \mathbb{B}/P .

< ロ > < 同 > < 回 > < 回 >

(1) Every infinite complete ccc algebra is a limit of a directed system of copies of $P(\omega)$.

Corrolary

(1) Every infinite complete ccc algebra is a limit of a directed system of copies of $P(\omega)$. Dually, every infinite ccc EDC space is an inverse limit of a directed system of copies of $\beta\omega$.

- 4 同 🕨 - 4 目 🕨 - 4 目

Corrolary

(1) Every infinite complete ccc algebra is a limit of a directed system of copies of $P(\omega)$. Dually, every infinite ccc EDC space is an inverse limit of a directed system of copies of $\beta\omega$. (2) Every infinite complete ccc Boolean algebra is an inverse limit of an inverse system of copies of $P(\omega)/fin$.

- 4 同 ト 4 ヨ ト 4 ヨ

Corrolary

(1) Every infinite complete ccc algebra is a limit of a directed system of copies of $P(\omega)$. Dually, every infinite ccc EDC space is an inverse limit of a directed system of copies of $\beta\omega$. (2) Every infinite complete ccc Boolean algebra is an inverse limit of an inverse system of copies of $P(\omega)/fin$. Dually, every infinite ccc EDC space is a direct limit of directed system of copies of ω^* .

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

▲ □ ▶ ▲ □ ▶ ▲

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For P a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ;

▲ □ ▶ ▲ □ ▶ ▲

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For *P* a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ; so \mathcal{U}_P can be viewed as an ultrafilter on $P(\omega)$.

A (1) > (1) = (1) (1)

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For P a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ; so \mathcal{U}_P can be viewed as an ultrafilter on $P(\omega)$. It is nontrivial if $\mathcal{U} \cap P = \emptyset$.

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For P a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ; so \mathcal{U}_P can be viewed as an ultrafilter on $P(\omega)$. It is nontrivial if $\mathcal{U} \cap P = \emptyset$.

For $P \leq Q$, we have $\mathcal{U}_P \geq_{RK} \mathcal{U}_Q$ via the function that maps $p \in P$ to the unique $q \in Q$ such that p < q.

So every ultrafilter \mathcal{U} on \mathbb{B} determines a subset of the Rudin-Keisler ordering. This system is directed via $P \land Q \preceq P, Q$

- 4 周 ト 4 戸 ト 4 戸 ト

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For P a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ; so \mathcal{U}_P can be viewed as an ultrafilter on $P(\omega)$. It is nontrivial if $\mathcal{U} \cap P = \emptyset$.

For $P \leq Q$, we have $\mathcal{U}_P \geq_{RK} \mathcal{U}_Q$ via the function that maps $p \in P$ to the unique $q \in Q$ such that p < q.

So every ultrafilter \mathcal{U} on \mathbb{B} determines a subset of the Rudin-Keisler ordering. This system is directed via $P \land Q \preceq P, Q$ and is coherent in the sense that $\mathcal{U}_Q = \mathcal{U}_P \cap \mathbb{B}_Q$ for $P \preceq Q$.

(日) (同) (目) (日)

Ultrafilters and partitions

Fix an ultrafilter ${\cal U}$ on the complete ccc algebra ${\mathbb B}$ and look at how ${\cal U}$ reflects in the partition structure.

For P a partition of \mathbb{B} , put $\mathcal{U}_P = \mathcal{U} \cap \mathbb{B}_P$, which is clearly an ultrafilter on \mathbb{B}_P ; so \mathcal{U}_P can be viewed as an ultrafilter on $P(\omega)$. It is nontrivial if $\mathcal{U} \cap P = \emptyset$.

For $P \leq Q$, we have $\mathcal{U}_P \geq_{RK} \mathcal{U}_Q$ via the function that maps $p \in P$ to the unique $q \in Q$ such that p < q.

So every ultrafilter \mathcal{U} on \mathbb{B} determines a subset of the Rudin-Keisler ordering. This system is directed via $P \land Q \leq P, Q$ and is coherent in the sense that $\mathcal{U}_Q = \mathcal{U}_P \cap \mathbb{B}_Q$ for $P \leq Q$. The converse is true: every such system determines an ultrafilter $\mathcal{U} = \bigcup \mathcal{U}_P$ on the direct limit algebra $\mathbb{B} = \bigcup \mathbb{B}_P$.

< ロ > < 同 > < 回 > < 回 >

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ .

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ . Easy examples:

A (1) < A (1) < A (1) < A (1) </p>

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ . Easy examples:

• coherent antichain is just an antichain

・ 山 ト ・ ヨ ト ・

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ . Easy examples:

- coherent antichain is just an antichain
- coherent filter is just a filter

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ . Easy examples:

- coherent antichain is just an antichain
- coherent filter is just a filter
- coherent ultrafilter is just an ultrafilter

Coherent families

Definition. Let \mathbb{B} be a complete, atomless, ccc algebra. For a property φ of families of subsets of ω , we say that a subset $X \subseteq \mathbb{B}$ is a *coherent* φ -family on \mathbb{B} if for every partition $P = \{p_n; n \in \omega\}$ of \mathbb{B} , the family $\{A \subseteq \omega; \bigvee \{p_n; n \in A\} \in X\} \subseteq P(\omega)$ has φ . Easy examples:

- coherent antichain is just an antichain
- coherent filter is just a filter
- coherent ultrafilter is just an ultrafilter
- $\bullet\,$ coherent atom is a generic filter on $\mathbb B$

Coherent ultrafilters

We are interested in classes of coherent ultrafilters,

(日) (同) (三) (三)

э

Coherent ultrafilters

We are interested in classes of coherent ultrafilters, such as coherent P-ultrafilters.

- 4 同 2 4 日 2 4 日 2

э

Coherent ultrafilters

We are interested in classes of coherent ultrafilters,

such as coherent P-ultrafilters.

By the very definition, ZFC implications between various classes of ultrafilters on ω continue to hold for the corresponding classes of coherent ultrafilters on \mathbb{B} .

伺 ト イ ヨ ト イ ヨ

Coherent ultrafilters

We are interested in classes of coherent ultrafilters, such as coherent P-ultrafilters.

By the very definition, ZFC implications between various classes of ultrafilters on ω continue to hold for the corresponding classes of coherent ultrafilters on \mathbb{B} . For instance, every coherent selective ultrafilter on \mathbb{B} is a coherent *P*-ultrafilter on \mathbb{B} ,

伺 ト イ ヨ ト イ ヨ

Coherent ultrafilters

We are interested in classes of coherent ultrafilters, such as coherent P-ultrafilters.

By the very definition, ZFC implications between various classes of ultrafilters on ω continue to hold for the corresponding classes of coherent ultrafilters on \mathbb{B} . For instance, every coherent selective ultrafilter on \mathbb{B} is a coherent *P*-ultrafilter on \mathbb{B} , as every selective ultrafilter on ω is a *P*-ultrafilter on ω .

A 3 3 4 4

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Note that this is the *P*-point property,

demanded for *every* situation $P \leq Q$.

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Note that this is the *P*-point property,

demanded for *every* situation $P \leq Q$.

Warning: the coherent *P*-ultrafilter condition is 'only' evaluated in the subalgebras $\mathbb{B}_P \simeq P(\omega)$;

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Note that this is the *P*-point property,

demanded for *every* situation $P \leq Q$.

Warning: the coherent *P*-ultrafilter condition is 'only' evaluated in the subalgebras $\mathbb{B}_P \simeq P(\omega)$; a coherent *P*-ultrafilter on \mathbb{B} is *not* a *P*-point in $St(\mathbb{B})$

・ 同 ト ・ ヨ ト ・ ヨ

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Note that this is the *P*-point property,

demanded for *every* situation $P \leq Q$.

Warning: the coherent *P*-ultrafilter condition is 'only' evaluated in the subalgebras $\mathbb{B}_P \simeq P(\omega)$; a coherent *P*-ultrafilter on \mathbb{B} is *not* a *P*-point in $St(\mathbb{B})$, unless \mathbb{B} happens to be $P(\omega)$ itself.

- 4 同 1 4 日 1 4 日

Coherent P-ultrafilters

Lemma. Let \mathbb{B} be a complete ccc algebra. An ultrafilter \mathcal{U} on \mathbb{B} is a coherent *P*-ultrafilter iff for every pair of partitions *P* and *Q* of \mathbb{B} such that $P \leq Q$, either $\mathcal{U} \cap Q \neq \emptyset$, or there is a set $X \subseteq P$ such that $\bigvee X \in \mathcal{U}$ and for every $q \in Q$, the set $\{p \in X; p \land q \neq 0\}$ is finite.

Note that this is the P-point property,

demanded for *every* situation $P \leq Q$.

Warning: the coherent *P*-ultrafilter condition is 'only' evaluated in the subalgebras $\mathbb{B}_P \simeq P(\omega)$; a coherent *P*-ultrafilter on \mathbb{B} is *not* a *P*-point in $St(\mathbb{B})$, unless \mathbb{B} happens to be $P(\omega)$ itself. It is however a special point in $St(\mathbb{B})$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Do they even exist?

Question: Do (nontrivial) coherent P-ultrafilters exist?

Do they even exist?

Question: Do (nontrivial) coherent *P*-ultrafilters exist? Consistently **not**

Do they even exist?

Question: Do (nontrivial) coherent *P*-ultrafilters exist? Consistently **not**: for a coherent *P*-ultrafilter \mathcal{U} on \mathbb{B} , and a partition *P* (such that $P \cap \mathcal{U} = \emptyset$), the ultrafilter \mathcal{U}_P is a (nontrivial) *P*-point in $\mathbb{B}_P \simeq P(\omega)$

A (1) > (1) = (1) (1)

Do they even exist?

Question: Do (nontrivial) coherent *P*-ultrafilters exist? Consistently **not**: for a coherent *P*-ultrafilter \mathcal{U} on \mathbb{B} , and a partition *P* (such that $P \cap \mathcal{U} = \emptyset$), the ultrafilter \mathcal{U}_P is a (nontrivial) *P*-point in $\mathbb{B}_P \simeq P(\omega)$; those need not exist by a famous result of Shelah.

Do they even exist?

Question: Do (nontrivial) coherent *P*-ultrafilters exist? Consistently **not**: for a coherent *P*-ultrafilter \mathcal{U} on \mathbb{B} , and a partition *P* (such that $P \cap \mathcal{U} = \emptyset$), the ultrafilter \mathcal{U}_P is a (nontrivial) *P*-point in $\mathbb{B}_P \simeq P(\omega)$; those need not exist by a famous result of Shelah. But also, consistently **yes**

Do they even exist?

Question: Do (nontrivial) coherent *P*-ultrafilters exist? Consistently **not**: for a coherent *P*-ultrafilter \mathcal{U} on \mathbb{B} , and a partition *P* (such that $P \cap \mathcal{U} = \emptyset$), the ultrafilter \mathcal{U}_P is a (nontrivial) *P*-point in $\mathbb{B}_P \simeq P(\omega)$; those need not exist by a famous result of Shelah.

But also, consistently **yes**, in a strong sense.

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B}

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff **c** = **d**.

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \leq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\};$

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \leq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\}; \text{ start with } \mathcal{F}_{0} = \mathcal{F}.$

伺 ト イ ヨ ト イ ヨ ト

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \leq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\}$; start with $\mathcal{F}_0 = \mathcal{F}$. If an increasing chain $(\mathcal{F}_{\beta} \mid \beta < \alpha)$ of filters has been found such that every \mathcal{F}_{β} has a base smaller than **c** and has the *P*-ultrafilter property with respect to $\{(P_{\gamma}, Q_{\gamma}); \gamma < \beta\}$, proceed as follows.

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \preceq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\}$; start with $\mathcal{F}_0 = \mathcal{F}$. If an increasing chain $(\mathcal{F}_{\beta} \mid \beta < \alpha)$ of filters has been found such that every \mathcal{F}_{β} has a base smaller than **c** and has the *P*-ultrafilter property with respect to $\{(P_{\gamma}, Q_{\gamma}); \gamma < \beta\}$, proceed as follows. On α limit, let \mathcal{F}_{α} be generated by $\bigcup \{\mathcal{F}_{\beta}; \beta < \alpha\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most \mathbf{c} . Then every filter on \mathbb{B} generated by fewer than \mathbf{c} elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \preceq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\}; \text{ start with } \mathcal{F}_0 = \mathcal{F}.$ If an increasing chain $(\mathcal{F}_{\beta} \mid \beta < \alpha)$ of filters has been found such that every \mathcal{F}_{β} has a base smaller than **c** and has the *P*-ultrafilter property with respect to $\{(P_{\gamma}, Q_{\gamma}); \gamma < \beta\}$, proceed as follows. On α limit, let \mathcal{F}_{α} be generated by $\bigcup \{\mathcal{F}_{\beta}; \beta < \alpha\}$. If $\alpha = \beta + 1$ is a successor, consider (P_{β}, Q_{β}) .

Existence of coherent *P*-ultrafilters

Theorem: Let \mathbb{B} be a complete ccc Boolean algebra of π -weight at most **c**. Then every filter on \mathbb{B} generated by fewer than **c** elements can be extended to a coherent *P*-ultrafilter on \mathbb{B} iff $\mathbf{c} = \mathbf{d}$. Proof. Assume $\mathbf{c} = \mathbf{d}$ and let $\mathcal{F} \subseteq \mathbb{B}$ be a filter with a base smaller than **c**. Enumerate all partition pairs $P \preceq Q$ as $\{(P_{\alpha}, Q_{\alpha}); \alpha < \mathbf{d} \text{ isolated}\}; \text{ start with } \mathcal{F}_0 = \mathcal{F}.$ If an increasing chain $(\mathcal{F}_{\beta} \mid \beta < \alpha)$ of filters has been found such that every \mathcal{F}_{β} has a base smaller than **c** and has the *P*-ultrafilter property with respect to $\{(P_{\gamma}, Q_{\gamma}); \gamma < \beta\}$, proceed as follows. On α limit, let \mathcal{F}_{α} be generated by $\bigcup \{\mathcal{F}_{\beta}; \beta < \alpha\}$. If $\alpha = \beta + 1$ is a successor, consider (P_{β}, Q_{β}) . If some $q \in Q_{\beta}$ is compatible with \mathcal{F}_{β} , let $\mathcal{F}_{\alpha} = \mathcal{F}_{\beta+1}$ be the filter generated by $\mathcal{F}_{\beta} \cup \{q\}$ and be done with $(P_{\beta}, Q_{\beta}).$

・ロト ・同ト ・ヨト ・ヨト

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$;

A (1) > (1) = (1) (1)

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$.

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$.

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction:

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min\{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m.

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the *next* defined value.

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the *next* defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$.

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_{\beta}$ is partitioned into infinitely many $p \in P_{\beta}$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the *next* defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f : \omega \to \omega$ not dominated by any f_{ξ} ;

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_\beta$ is partitioned into infinitely many $p \in P_\beta$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the next defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f: \omega \to \omega$ not dominated by any f_{ξ} ; then $a = \bigvee \{p_n^m; n \in \omega, m \leq f(n)\}$ meets every a_{ξ} , as $f \leq f_{\xi}$.

- 4 同 ト 4 ヨ ト 4 ヨ

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_\beta$ is partitioned into infinitely many $p \in P_\beta$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the next defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f: \omega \to \omega$ not dominated by any f_{ξ} ; then $a = \bigvee \{p_n^m; n \in \omega, m \leq f(n)\}$ meets every a_{ξ} , as $f \leq f_{\xi}$. Let \mathcal{F}_{α} be generated by $\mathcal{F}_{\beta} \cup \{a\}$. This extends \mathcal{F}_{β} ,

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_\beta$ is partitioned into infinitely many $p \in P_\beta$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the next defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f: \omega \to \omega$ not dominated by any f_{ξ} ; then $a = \bigvee \{p_n^m; n \in \omega, m \leq f(n)\}$ meets every a_{ξ} , as $f \leq f_{\xi}$. Let \mathcal{F}_{α} be generated by $\mathcal{F}_{\beta} \cup \{a\}$. This extends \mathcal{F}_{β} , is generated by fewer than **c** elements.

(日) (同) (目) (日)

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_\beta$ is partitioned into infinitely many $p \in P_\beta$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the next defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f: \omega \to \omega$ not dominated by any f_{ξ} ; then $a = \bigvee \{p_n^m; n \in \omega, m \leq f(n)\}$ meets every a_{ξ} , as $f \leq f_{\xi}$. Let \mathcal{F}_{α} be generated by $\mathcal{F}_{\beta} \cup \{a\}$. This extends \mathcal{F}_{β} , is generated by fewer than \mathbf{c} elements, and has the *P*-ultrafilter property with respect to $(P_{\beta}, Q_{\beta}).$ < ロ > < 同 > < 回 > < 回 >

Existence of coherent *P*-ultrafilters (cont.)

If there is no such q in Q_{β} , enumerate Q_{β} as $\{q_n; n \in \omega\}$ and consider the refinement P_{β} of Q_{β} . Without loss of generality, every $q_n \in Q_\beta$ is partitioned into infinitely many $p \in P_\beta$; enumerate $\{p \in P; p < q_n\}$ as $\{p_n^m; m \in \omega\}$. Let $\{a_{\xi}; \xi < \kappa\}$ be the base of \mathcal{F}_{β} , for some $\kappa < \mathbf{c}$. Now emulate the Ketonen construction: for each $\xi < \kappa$, put $f_{\xi}(n) = \min \{m; a_{\xi} \land p_n^m \neq 0\}$ if there is such an m. In the missing places, fill the value of $f_{\xi}(n)$ with the next defined value. This yields a family $\{f_{\xi} : \omega \to \omega; \xi < \kappa\}$ of functions which cannot be dominating, as $\kappa < \mathbf{c} = \mathbf{d}$. Take a (strictly increasing) function $f: \omega \to \omega$ not dominated by any f_{ξ} ; then $a = \bigvee \{p_n^m; n \in \omega, m \leq f(n)\}$ meets every a_{ξ} , as $f \leq f_{\xi}$. Let \mathcal{F}_{α} be generated by $\mathcal{F}_{\beta} \cup \{a\}$. This extends \mathcal{F}_{β} , is generated by fewer than c elements, and has the P-ultrafilter property with respect to (P_{β}, Q_{β}) . Now extend $\bigcup \{\mathcal{F}_{\alpha}; \alpha < \mathbf{c}\}$ to an ultrafilter.

Corollary: The following are equivalent

Corollary: The following are equivalent

 $\bullet \ \mathbf{c} = \mathbf{d}$

Corollary: The following are equivalent

- $\bullet \ \mathbf{c} = \mathbf{d}$
- *P*-points on ω exist generically

Corollary: The following are equivalent

 $\bullet \ \mathbf{c} = \mathbf{d}$

- *P*-points on ω exist generically
- coherent *P*-ultrafilters on complete ccc B with π(B) = c exist generically

Corollary: The following are equivalent

• c = d

- *P*-points on ω exist generically
- coherent *P*-ultrafilters on complete ccc B with π(B) = c exist generically

Question: Is there a coherent *P*-ultrafilter on a complete ccc Boolean algebra \mathbb{B} which is bigger than **c**?

- 4 同 2 4 日 2 4 日

Nonhomogeneity

Definition. A topological space X is *homogeneous* if for every two points $x, y \in X$ there is an automorphism f of X such that f(x) = y.

▲□ ► < □ ► </p>

Nonhomogeneity

Definition. A topological space X is *homogeneous* if for every two points $x, y \in X$ there is an automorphism f of X such that f(x) = y. Theorem (Frolík): A Stone space of an infinite complete Boolean algebra (that is, an extremally disconnected compact space) is never homogeneous.

- 4 周 ト 4 月 ト 4 月

Nonhomogeneity

Definition. A topological space X is *homogeneous* if for every two points $x, y \in X$ there is an automorphism f of X such that f(x) = y.

Theorem (Frolík): A Stone space of an infinite complete Boolean algebra (that is, an extremally disconnected compact space) is never homogeneous.

That is, there are pairs of points that cannot be swapped by a homeomorphism.

(4月) (1日) (1日)

Nonhomogeneity

Definition. A topological space X is *homogeneous* if for every two points $x, y \in X$ there is an automorphism f of X such that f(x) = y.

Theorem (Frolík): A Stone space of an infinite complete Boolean algebra (that is, an extremally disconnected compact space) is never homogeneous.

That is, there are pairs of points that cannot be swapped by a homeomorphism. These are *witnesses of nonhomogeneity*.

(4月) (1日) (1日)

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

< ∃ >

< 67 ▶

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for $w(X) > \mathbf{c}$;

▲ □ ▶ ▲ □ ▶ ▲

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*.

・ 同 ト ・ ヨ ト ・ ヨ

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases.

A (1) > (1) = (1)

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases.

So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight c.

伺 ト イ ヨ ト イ ヨ

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases. So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight *c*. Definition: A point $x \in X$ is *discretely untouchable* if $x \notin cl(C \setminus \{x\})$ for every countable discrete set $C \subseteq X$.

・ 同 ト ・ ヨ ト ・ ヨ

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases. So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight *c*. Definition: A point $x \in X$ is *discretely untouchable* if $x \notin cl(C \setminus \{x\})$ for every countable discrete set $C \subseteq X$. (a hot candidate

(4月) (1日) (1日)

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases. So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight *c*. Definition: A point $x \in X$ is *discretely untouchable* if $x \notin cl(C \setminus \{x\})$ for every countable discrete set $C \subseteq X$. (a hot candidate since 1991)

・ 同 ト ・ ヨ ト ・ ヨ

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases. So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight *c*.

Definition: A point $x \in X$ is *discretely untouchable* if

 $x \notin cl(C \setminus \{x\})$ for every countable discrete set $C \subseteq X$.

(a hot candidate since 1991)

Definition: A point $x \in X$ is untouchable if $x \notin cl(C \setminus \{x\})$ for every countable nowhere dense set $C \subseteq X$.

(日) (同) (目) (日)

Witnessing nonhmogeneity

In certain subclasses of EDC, witnesses of nonhomogeneity have been found.

absolutely: van Mill for w(X) > c; van Douwen for non-*ccc*. consistently: Balcar-Simon in the remaining cases.

So what remains is to find witnesses of nonhomogeneity for extremally disconnected ccc compacts of weight c.

Definition: A point $x \in X$ is *discretely untouchable* if

 $x \notin cl(C \setminus \{x\})$ for every countable discrete set $C \subseteq X$.

(a hot candidate since 1991)

Definition: A point $x \in X$ is untouchable if $x \notin cl(C \setminus \{x\})$ for every countable nowhere dense set $C \subseteq X$.

(This slide absolutely doesn't do justice to the whole story.)

< ロ > < 同 > < 三 > < 三 >

An untouchable point

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

An untouchable point

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense.

・ 同 ト ・ ヨ ト ・ ヨ

An untouchable point

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$.

An untouchable point

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U}

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i < k} R_i \subseteq R$.

- 4 同 6 4 日 6 4 日 6

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i < k} R_i \subseteq R$. If $\bigcup_{i < k} R_i = R$, good for \mathcal{U} .

- 4 同 6 4 日 6 4 日 6

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i < k} R_i \subseteq R$. If $\bigcup_{i < k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i < k} R_i \subseteq R$. If $\bigcup_{i < k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} .

- 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent P-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i < k} R_i \subseteq R$. If $\bigcup_{i < k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k

- 4 同 6 4 日 6 4 日 6

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$.

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition. For each $a_i \in Q$, choose an infinite partition P_i of a_i

(日) (同) (目) (日)

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition. For each $a_i \in Q$, choose an infinite partition P_i of a_i such that $P_i \cap [] R_i = \emptyset$

・ロト ・同ト ・ヨト ・ヨト

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition. For each $a_i \in Q$, choose an infinite partition P_i of a_i such that $P_i \cap \bigcup R_i = \emptyset$ (R_i is nowhere dense).

・ロト ・同ト ・ヨト ・ヨト

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition. For each $a_i \in Q$, choose an infinite partition P_i of a_i such that $P_i \cap [] R_i = \emptyset$ (R_i is nowhere dense). So $P = [] P_i \preceq Q$.

イロト イポト イラト イラト

Theorem: Let \mathbb{B} be a complete ccc algebra. Let \mathcal{U} be a coherent *P*-ultrafilter on \mathbb{B} . Then \mathcal{U} is an untouchable point in $St(\mathbb{B})$. Proof. Let $R = \{\mathcal{F}_n; n \in \omega\} \subseteq St(\mathbb{B})$ be countable nowhere dense. Choose some $a_0 \in \mathcal{F}_0$ with $-a_0 \in \mathcal{U}$ and put $R_0 = \{\mathcal{F} \in R; a_0 \in \mathcal{F}\} \subseteq R$. Continue inductively: if disjoint $a_i \in \mathbb{B}^+$ for i < k have been found such that a_i separates \mathcal{F}_i from \mathcal{U} and $\bigvee_{i < k} a_i \notin \mathcal{U}$ put $R_i = \{\mathcal{F} \in R; a_i \in \mathcal{F}\}$ and consider $\bigcup_{i \leq k} R_i \subseteq R$. If $\bigcup_{i \leq k} R_i = R$, good for \mathcal{U} . Otherwise, let n_k be the first index such that $\mathcal{F}_{n_k} \notin \bigcup_{i < k} R_i$ and choose some $a_k \perp \bigvee_{i < k} a_i$ separating \mathcal{F}_{n_k} from \mathcal{U} . This either stops at some k or we arrive at an infinite disjoint system $Q = \{a_i; i \in \omega\} \subseteq \mathbb{B}^+$. WLOG, Q is a partition. For each $a_i \in Q$, choose an infinite partition P_i of a_i such that $P_i \cap \bigcup R_i = \emptyset$ (R_i is nowhere dense). So $P = \bigcup P_i \preceq Q$. So there is some $u \in \mathcal{U}$ such that $u \notin \mathcal{F}_n$ for all n.